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then the last step selects nodes of any kind that are among the descendants of the top

element “book” and have a “citation” child element. Previous examples are all abso-

lute XPath expressions (since they involve a leading “/”). The general meaning of an

expression is defined relatively to a context node in the tree. Starting from a particu-

lar context node in the tree, every other nodes can be reached. This is because XPath

defines powerful navigational capabilities, including a full set of axes, as captured on

figure 1. For more informal details on the complete XPath language, the reader can refer

to the specification [6].
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Fig. 1. Axes: partitions of document nodes from a particular context node.

Abstract syntax: a compositional fragment. For the remaining part of the paper, we

focus on a restricted but significant fragment of XPath, composed of all XPath axes.

The abstract syntax of the fragment is given on figure 2. In order to make the XPath

syntax fully compositional, two variants are included: the void path ⊥ and the explicit
root node ∧ (respectively proposed in [18] and [19]). An other extension concerning

qualifiers is the inclusion constraint p1 " p2 over set of nodes selected by p1 and p2.

First defined in [19], the authors believe that this feature brings useful expressive power

without increasing cost of formal treatment (however this will be verified along our on-

going work on path containment). Note that it turns the construct p1[p2] into a syntactic

sugar for p1[not (p2 " ⊥)]. Although the XPath fragment we consider already covers
a significant range of real world use cases, our intent is to extend it to cover the XPath

standard as much as possible.


